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Abstract
1. The design- based and model- based approaches to frequentist statistical in-

ference rest on fundamentally different foundations. In the design- based ap-
proach, inference relies on random sampling. In the model- based approach, 
inference relies on distributional assumptions. We compare the approaches in a 
finite population spatial context.

2. We provide relevant background for the design- based and model- based ap-
proaches and then study their performance using simulated data and real data. 
The real data are from the United States Environmental Protection Agency's 
2012 National Lakes Assessment. A variety of sample sizes, location layouts, de-
pendence structures, and response types are considered. The population mean 
is the parameter of interest, and performance is measured using statistics like 
bias, squared error and interval coverage.

3. When studying the simulated and real data, we found that regardless of the 
strength of spatial dependence in the data, the generalized random tessella-
tion stratified (GRTS) algorithm, which explicitly incorporates spatial locations 
into sampling, tends to outperform the simple random sampling (SRS) algorithm, 
which does not explicitly incorporate spatial locations into sampling. We also 
found that model- based inference tends to outperform design- based inference, 
even for skewed data where the model- based distributional assumptions are vi-
olated. The performance gap between design- based inference and model- based 
inference is small when GRTS samples are used but large when SRS samples are 
used, suggesting that the sampling choice (whether to use GRTS or SRS) is most 
important when performing design- based inference.

4. There are many benefits and drawbacks to the design- based and model- based 
approaches for finite population spatial sampling and inference that practition-
ers must consider when choosing between them. We provide relevant back-
ground contextualizing each approach and study their properties in a variety of 
scenarios, making recommendations for use based on the practitioner's goals.
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1  |  INTRODUC TION

When data cannot be collected for all units in a population (popula-
tion units), data are collected on a subset of the population units— 
this subset is called a sample. There are two general approaches 
for using samples to make frequentist statistical inferences about 
a population: design- based and model- based. In the design- based 
approach, inference relies on randomly assigning some population 
units to be in the sample (random sampling). Alternatively, in the 
model- based approach, inference relies on distributional assump-
tions about the underlying data- generating stochastic process 
(superpopulation). Each paradigm has a deep historical context 
(Sterba, 2009) and its own set of benefits and drawbacks (Brus & De 
Gruijter, 1997; Hansen et al., 1983). In this manuscript, we compare 
design- based and model- based approaches for finite population 
spatial sampling and inference.

Spatial data are data that have some sort of spatial index (usu-
ally specified via coordinates). De Gruijter and Ter Braak (1990) and 
Brus and DeGruijter (1993) give early comparisons of design- based 
and model- based approaches for spatial data, quashing the belief 
that design- based approaches could not be used for spatially cor-
related data. Since then, there have been several general compari-
sons between design- based and model- based approaches for spatial 
data (Brus, 2021; Brus & De Gruijter, 1997; Ver Hoef, 2002, 2008). 
Cooper (2006) reviews the two approaches in an ecological context 
before introducing a ‘model- assisted’ variance estimator that com-
bines aspects from each approach. In addition to Cooper (2006), 
there has been substantial research and development into estima-
tors that use both design- based and model- based principles (see 
e.g., Sterba (2009) and Cicchitelli and Montanari (2012), and for 
Bayesian approaches, see Chan- Golston et al. (2020) and Hofman 
and Brus (2021)).

While comparisons between design- based and model- based 
approaches have been studied in spatial contexts, our contribution 
is comparing design- based approaches specifically built for spatial 
data to model- based approaches. Though the broad comparisons 
we draw between design- based and model- based approaches gen-
eralize to finite and infinite populations, we focus on finite popu-
lations. A finite population contains a finite number of population 
units (we assume the finite number is known)— an example is lakes 
(treated as a whole with the lake centroid representing location) in 
the conterminous United States. An infinite population contains an 
infinite number of population units— an example is locations within 
a single lake.

The rest of the manuscript is organized as follows. In Section 1.1, 
we introduce and provide relevant background for design- based and 
model- based approaches to finite population spatial sampling and 

inference. In Section 2, we describe how we intend to compare per-
formance of the approaches using simulated and real data. The real 
data are from the United States Environmental Protection Agency's 
2012 National Lakes Assessment (NLA) (USEPA, 2012). In Section 3, 
we present analysis results for the simulated data and real data. In 
Section 4, we end with a discussion and provide directions for future 
research.

1.1  |  Background

The design- based and model- based approaches incorporate ran-
domness in fundamentally different ways. In this section, we de-
scribe the role of randomness for each approach and the subsequent 
effects on statistical inferences for spatial data.

1.1.1  |  Comparing design- based and  
model- based approaches

The design- based approach assumes the population is fixed. 
Randomness is incorporated via the selection of population units 
according to a sampling design. A sampling design assigns a prob-
ability of selection to each sample (subset of population units). Some 
examples of commonly used sampling designs include simple ran-
dom sampling, stratified random sampling and cluster sampling. The 
inclusion probability of a population unit is calculated by summing 
each sample's probability of selection over all samples that contain 
the population unit. Inclusion probabilities are often used when se-
lecting samples and estimating population parameters.

When samples are chosen in a manner such that the layout of 
sampled units reflects the layout of the population units, we call the 
resulting sample spatially balanced. By ‘reflecting the layout of the 
population units,’ we mean that if population units are concentrated 
in specific areas, the units in the sample should be concentrated in 
the same areas. Because spatially balanced samples reflect the lay-
out of the population units, they are not necessarily spread out in 
space in some equidistant manner. One method of selecting spatially 
balanced samples is the generalized random tessellation stratified 
(GRTS) algorithm (Stevens & Olsen, 2004), which we discuss in more 
detail in Section 1.1.2. To quantify the spatial balance of a sample, 
Stevens and Olsen (2004) proposed loss metrics based on Voronoi 
polygons (i.e., Dirichlet Tessellations).

Fundamentally, the design- based approach combines the ran-
domness of the sampling design with the data collected via the 
sample to justify the estimation and uncertainty quantification of 
fixed, unknown parameters of a population (e.g., a population mean). 

K E Y W O R D S
design- based inference, finite population block kriging (FPBK), generalized random tessellation 
stratified (GRTS) algorithm, local neighbourhood variance estimator, model- based inference, 
restricted maximum likelihood (REML) estimation, spatial covariance, spatially balanced 
sampling
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Treating the data as fixed and incorporating randomness through 
the sampling design yields estimators having very few other as-
sumptions. Confidence intervals for these types of estimators are 
typically derived using limiting arguments that incorporate all possi-
ble samples. Sample means, for example, are asymptotically normal 
(Gaussian) by the central limit theorem (under some assumptions). 
If we repeatedly select samples from the population, then 95% of 
all 95% confidence intervals constructed from a procedure with 
appropriate coverage will contain the true fixed population mean. 
Särndal et al. (2003) and Lohr (2009) provide thorough reviews of 
the design- based approach.

The model- based approach assumes the population is a random 
realization of a data- generating stochastic process. Randomness is 
formally incorporated through distributional assumptions on this 
process. Strictly speaking, randomness need not be incorporated 
through random sampling, though Diggle et al. (2010) warn against 
preferential sampling. Preferential sampling occurs when the pro-
cess generating the data locations and the process being modelled 
are not independent of one another. To guard against preferen-
tial sampling, model- based approaches can implement some form 
of random sampling. It is common, however, for model- based ap-
proaches to sample non- randomly. When model- based approaches 
do implement random sampling, the inclusion probabilities are ig-
nored when analysing the sample (in contrast to the design- based 
approach, which relies on these inclusion probabilities to analyse the 
sample).

Instead of estimating fixed, unknown population parameters, 
as in the design- based approach, often the goal of model- based in-
ference is to predict the value of a realized variable. For example, 
suppose the realized mean of all population units (the realized pop-
ulation mean) is the variable of interest. Instead of a fixed, unknown 
mean, we are predicting the value of the mean, a random variable. 
Prediction intervals are then derived using assumptions of the data- 
generating stochastic process. If we repeatedly generate realizations 

from the same process and select samples, then 95% of all 95% pre-
diction intervals constructed from a procedure with appropriate 
coverage will contain their respective realized means. Cressie (1993) 
and Schabenberger and Gotway (2017) provide thorough reviews of 
model- based approaches for spatial data. In Figure 1, we provide a 
visual comparison of the design- based and model- based approaches 
(Ver Hoef (2002) and Brus (2021) provide similar figures). Figure 1 
contrasts the design- based approach with a fixed population and 
random sampling to the model- based approach with random popu-
lations and non- random sampling.

1.1.2  |  Spatially balanced design and analysis

We previously mentioned that the design- based approach can be 
used to select spatially balanced samples. Spatially balanced samples 
are useful because parameter estimates from these samples tend to 
vary less (be more precise) than parameter estimates from samples 
lacking spatial balance (Barabesi & Franceschi, 2011; Benedetti 
et al., 2017; Grafström & Lundström, 2013; Robertson et al., 2013; 
Stevens & Olsen, 2004; Wang et al., 2013). The first spatially balanced 
sampling algorithm to see widespread use was the generalized ran-
dom tessellation stratified (GRTS) algorithm (Stevens & Olsen, 2004). 
After the GRTS algorithm was developed, several other spatially bal-
anced sampling algorithms emerged, including stratified sampling 
with compact geographical strata (Walvoort et al., 2010), the local 
pivotal method (Grafström et al., 2012; Grafström & Matei, 2018), 
spatially correlated Poisson sampling (Grafström, 2012), balanced ac-
ceptance sampling (Robertson et al., 2013), within- sample- distance 
sampling (Benedetti & Piersimoni, 2017), and Halton iterative par-
titioning sampling (Robertson et al., 2018). In this manuscript, we 
select spatially balanced samples using the GRTS algorithm because 
it is readily available in the spsurvey R package (Dumelle, Kincaid, 
et al., 2022) and naturally accommodates finite and infinite sampling 

F I G U R E  1  A visual comparison of 
the design- based and model- based 
approaches. In the top row, the design- 
based approach is highlighted. There is 
one fixed population with nine population 
units and three random samples of size 
four (points circled are those sampled). 
The response values at each site are fixed. 
In the bottom row, the model- based 
approach is highlighted. There are three 
realizations of the same data- generating 
stochastic process that are all sampled 
at the same four locations. The response 
values at each site are random.
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frames, unequal inclusion probabilities, and replacement units. 
Replacement units are additional population units that can be sam-
pled when a population unit originally selected can no longer be 
sampled. A couple of reasons why an originally selected site can no 
longer be sampled include its location being physically inaccessible 
or it is on private land that the researcher does not have permission 
to access.

The GRTS algorithm selects samples by utilizing a particular 
mapping between two- dimensional and one- dimensional space 
that preserves proximity relationships. First, the bounding box of 
the domain is split up into four distinct, equally sized squares called 
level- one cells. Each level- one cell is randomly assigned a level- one 
address of 0, 1, 2, or 3. The set of level- one cells is denoted by 1 
and defined as 1 ≡ {a1: a1 = 0, 1, 2, 3}. Within each level- one cell, the 
inclusion probability for each population unit (which is pre- specified) 
is summed, and if any of these sums are one or greater, a second 
level of cells is added. Then each level- one cell is split into four dis-
tinct, equally sized squares called level- two cells. Each level- two cell 
is randomly assigned a level- two address of 0, 1, 2 or 3. The set of 
level- two cells is denoted by 2 and defined as 2 ≡ {a1a2: a1 = 0, 1, 
2, 3; a2 = 0, 1, 2, 3}. The inclusion probabilities within each level- 
two cell are summed, and if any of these sums are one or greater, a 
third level of cells is added. This process continues for k steps, until 
all level- k cells have inclusion probability sums less than one. Then 
k ≡ {a1…ak: a1 = 0, 1, 2, 3;…; ak = 0, 1, 2, 3}. Figure 2 provides some 
intuition regarding the assignment of level- one and level- two cells.

After determining k, the set is placed into hierarchical order. 
Hierarchical order is a numeric order that first sorts k by the level- 
one addresses from smallest to largest, then sorts k by the level- 
two addresses from smallest to largest, and so on. For example, 2 in 
hierarchical order is the set {00, 01, 02, 03, 10, …, 13, 20, …, 23, 30, 
…, 33}. Because hierarchical ordering sorts by level- one cells, then 
level- two cells, and so on, population units that have similar hierar-
chical addresses tend to be nearby one another in space. Next, each 
population unit is mapped to a one- dimensional line in hierarchical 
order where each population unit's inclusion probability equals its 
line- length. If a level- k cell has multiple population units in it, they 
are randomly placed within the cell's respective line segment. A uni-
form random variable is then simulated in [0, 1] and a systematic 
sample is selected on the line, yielding n sample points for a sample 
size n. Each of these sample points falls on some population unit's 
line segment, and thus that population unit is selected in the sample. 
For further details regarding the GRTS algorithm, see Stevens and 
Olsen (2004).

After selecting a sample and collecting data, unbiased estimates 
of population means and totals can be obtained using the Horvitz- 
Thompson estimator (Horvitz & Thompson, 1952). If τ is a population 
total, the Horvitz– Thompson estimator for τ, denoted by �̂ht, is given 
by

where zi is the value of the ith population unit in the sample, πi is the 
inclusion probability of the ith population unit in the sample and n is 
the sample size. An estimate of the population mean is obtained by 
dividing �̂ht by N, the number of population units.

It is also important to quantify the uncertainty in �̂ht. The 
Horvitz– Thompson (Horvitz & Thompson, 1952) and Sen– Yates– 
Grundy (Sen, 1953; Yates & Grundy, 1953) variance estimators 
are often used to estimate Var(�̂ht), but these estimators have two 
drawbacks. First, they rely on calculating πij, the probability that 
population unit i and population unit j are both in the sample— this 
quantity can be challenging if not impossible to calculate analytically 
for GRTS samples. Second, these estimators tend to ignore the spa-
tial locations of the population units. To address these two draw-
backs simultaneously, Stevens and Olsen (2003) proposed the local 
neighbourhood variance estimator. The local neighbourhood vari-
ance estimator does not rely on πij and estimates the variance of �̂  
conditional on the random properties of the GRTS sample— the idea 
being that this conditioning should yield a more precise estimate of 
τ. They show that the contribution from each sampled population 
unit to the overall variance is dominated by local variation. Thus the 
local neighbourhood variance estimator is a weighted sum of vari-
ance estimates from each sampled population unit's local neighbour-
hood. These local neighbourhoods contain the sampled population 
unit itself and its three nearest neighbours (among all other sampled 
population units). For more details, see Stevens and Olsen (2003).

1.1.3  |  Finite population block kriging

Finite population block kriging (FPBK) is a model- based approach 
that expands the geostatistical Kriging framework to the finite 
population setting (Ver Hoef, 2008). Instead of developing inference 
based on a specific sampling design, we assume the data are gener-
ated by a spatial stochastic process. We summarize some of the basic 
principles of FPBK next— see Ver Hoef (2008) for technical details 
and see Higham, Ver Hoef, Madsen, and Aderman (2021) for an ex-
tension to cases of imperfect detection among population units. Let 
z ≡ {z(s1), z(s2), …, z(sN)} be an N × 1 response vector at locations s1, 
s2, …, sN that can be measured at the N population units. Suppose 
we want to use a sample to predict some linear function of the re-
sponse variable, f(z) = b′z, where b′ is a 1 × N vector of weights (e.g, 
the population mean is represented by a weights vector whose ele-
ments all equal 1/N). Denoting quantities that are part of the sam-
pled population units with a subscript s and quantities that are part 
of the unsampled population units with a subscript u, let

where Xs and Xu are the design matrices for the sampled and unsam-
pled population units, respectively, β is the parameter vector of fixed 
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effects, and δ ≡ [δs δu]
T, where δs and δu are random errors for the sam-

pled and unsampled population units, respectively.
FPBK assumes δ in Equation (2) has mean- zero and a spatial 

dependence structure that can be modelled using a covariance 
function. This covariance function is commonly assumed to be non- 
negative, second- order stationary (depending only on the separa-
tion vector [e.g., distance] between population units), and isotropic 
(independent of direction) (Cressie, 1993). Henceforth, it is implied 
that we have made these same assumptions regarding δ. Chiles and 
Delfiner (1999), pp. 80– 93 discuss covariance functions that are not 
second- order stationary, not isotropic or not either. A variety of flex-
ible covariance functions can be used to model δ (Cressie, 1993)— 
one example is the exponential covariance function. Cressie (1993) 
provides a thorough list of spatial covariance functions. The i, jth 
element of the exponential covariance matrix, cov(δ), is

where σ1
2 is the variance parameter that quantifies the spatially de-

pendent (correlated) variability, σ2
2 is the variance parameter the 

quantifies that spatially independent (not correlated) variability, ϕ is 
the distance parameter that measures the distance- decay rate of the 
covariance, and hi,j is the Euclidean distance between population units 
i and j. In geostatistical literature, σ1

2 is called the partial sill, σ2
2 is called 

the nugget, and ϕ is called the range. We denote θ as the vector of 
covariance parameters that composes δ. In Equation 3, θ = {σ1

2, σ2
2, ϕ}.

The parameters in Equation 2 can be estimated using a variety of 
techniques, but we focus on restricted maximum likelihood (REML) 
(Harville, 1977; Patterson & Thompson, 1971; Wolfinger et al., 1994). 
REML is preferred over maximum likelihood (ML) because ML esti-
mates can be badly biased for small sample sizes, due to the fact that 
ML makes no adjustment for the simultaneous estimation of β and θ 
(Patterson & Thompson, 1971). Minus twice the REML log- likelihood 
of the sampled sites is given by

where �̃ = (Xs
TΣss

−1Xs)
−1Xs

TΣss
−1zs and Σss is the covariance matrix of the 

sampled sites. Minimizing Equation 4 yields ̂�reml, the REML estimates of 
θ. Then �̂reml, the REML estimate of β, is given by 

(
X
T

s
�̂
−1

ss
X

)−1

X
T

s
�̂
−1

ss
zs ,

,  
where �̂ss is Σss evaluated at �̂reml.

With the model formulation in Equation 2, the best linear un-
biased predictor (BLUP) of f(b′z) and its prediction variance can be 
computed. While details of the derivation are in Ver Hoef (2008), we 
note here that the predictor and its variance are both moment- based, 
meaning that they do not rely on any distributional assumptions. 
Distributional assumptions are used, however, when constructing 
prediction intervals.

Other approaches, such as k- nearest- neighbours (Fix & 
Hodges, 1989; Ver Hoef & Temesgen, 2013) and random forest 
(Breiman, 2001), among others, could also be used to obtain predic-
tions for a mean or total from finite population spatial data. Compared 
to the k- nearest- neighbours and random forest approach, we prefer 
FPBK because it is model- based and relies on theoretically- based 
variance estimators leveraging the model's spatial covariance struc-
ture, whereas k- nearest- neighbours and random forests use ad- hoc 
variance estimators (Ver Hoef & Temesgen, 2013). Additionally, Ver 
Hoef and Temesgen (2013) compared FPBK, k- nearest- neighbours, 
and random forest in a variety of spatial data contexts, and FPBK 
tended to perform best.

2  |  MATERIAL S AND METHODS

In this section, we describe how we used simulated and real data 
to investigate performance between simple random sampling (SRS) 
and GRTS sampling as well as performance between design- based 
(DB) and model- based (MB) inference. In SRS and GRTS sampling, all 
population units had equal inclusion probabilities and were selected 
without replacement. The important distinction between SRS and 
GRTS is that SRS ignores spatial locations while sampling but GRTS 
explicitly incorporates them. Together, the two sampling plans (SRS 
and GRTS) combined with the two inference approaches (DB and MB) 
yielded four sampling- inference combinations: SRS- DB, SRS- MB, 
GRTS- DB, and GRTS- MB. For SRS- DB, the Horvitz– Thompson es-
timator (1) was used to estimate means and the commonly- used SRS 

(3)cov
�
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F I G U R E  2  Assignment of level- one and 
level- two cells to the spatial domain. In 
(a), each level- one cells is randomly given 
a level- one address of 0, 1, 2 or 3. In (b), 
each level- two cell within each level- one 
cell is randomly given a level- two address 
of 0, 1, 2 or 3.

(a) (b)



    |  2023Methods in Ecology and EvoluonDUMELLE et al.

variance formula (Lohr, 2009; Särndal et al., 2003) was used to esti-
mate variances. This variance formula is given by

where zi is the response value of the ith sampled population unit, z 
is the mean of all zi, n is the sample size, N is the population size, and 
f = (1 − n/N) (f is often called the finite population correction factor). 
For GRTS- DB, the Horvitz- Thompson estimator was used to estimate 
means and the local neighbourhood variance was used to estimate 
variances. For SRS- MB and GRTS- MB, FPBK was used to estimate 
means and variances using restricted maximum likelihood. SRS, GRTS 
sampling, and design- based inference were implemented using the 
spsurvey R package (Dumelle, Kincaid, et al., 2022). FPBK was im-
plemented using the sptotal R package (Higham, Ver Hoef, Frank, & 
Dumelle, 2021).

The simulated and real data were used for distinct objectives. 
The simulated data were used to compare the sampling- inference 
combinations across many realized populations (from the same data- 
generating stochastic process) and random samples. The real data 
were used to compare the sampling- inference combinations within 
a single realized population but across random samples. With the 
simulated data, we were in control of the data- generating stochastic 
process and the random sampling process. With the real data, we 
were only in control of the random sampling process (which is typi-
cally the case in practice).

2.1  |  Simulated data

We evaluated performance of the four sampling- inference combina-
tions in 36 different simulation scenarios. The 36 scenarios resulted 
from the crossing of three sample sizes, two location layouts (of the 
population units), two response types, and three proportions of de-
pendent random error (DRE). The three sample sizes (n) were n = 50, 
n = 100, and n = 200. Samples were always selected from a popula-
tion size (N) of N = 900. The two location layouts were random and 
gridded. Locations in the random layout were randomly generated 
inside the unit square ([0, 1] × [0, 1]). Locations in the gridded layout 

were placed on a fixed, equally spaced grid inside the unit square. 
The two response types were normal and skewed. For the normal 
response type, the response was simulated using mean- zero ran-
dom errors with the exponential covariance (Equation 3) for three 
proportions of dependent random error (DRE): 0% DRE, 50% DRE, 
and 90% DRE. Recall the proportion of DRE is represented by σ1

2/
(σ1

2 + σ2
2), where σ1

2 and σ2
2 are the DRE variance and independent 

random error (IRE) variance from Equation 3, respectively. The total 
variance, σ1

2 + σ2
2, was always 2. The distance parameter was always 

2/3, chosen so that the correlation in the DRE decayed to nearly 
zero at 2, the largest possible distance between two population units 
in the domain. For the skewed response type, the response was first 
simulated using the same approach as for the normal response type, 
except that the total variance was 0.6931 instead of 2. The response 
was then exponentiated, yielding a skewed random variable whose 
total variance was 2. The skewed responses were used to evaluate 
performance of the sampling- inference approaches for data that 
were not normally distributed but were still estimated using REML, 
which relies on a normal log- likelihood. Figure 3 shows an example 
of a realized population for the normal and skewed responses using 
the random location layout and 50% DRE.

In each of the 36 simulation scenarios, there were 2,000 indepen-
dent simulation trials. Within each trial, a population was simulated 
according to the specifications of the particular simulation scenario 
(for the random location layout, locations were simulated separately 
for each trial). Next, a random SRS sample and a random GRTS sam-
ple were selected. Then, design- based and model- based inferences 
were used to estimate (design- based) or predict (model- based) the 
realized mean and construct 95% confidence (design- based) or 95% 
prediction (model- based) intervals. With model- based inference, co-
variance parameters and the realized mean were estimated (using 
REML) separately for each trial. After all 2,000 trials, we summa-
rized the long- run performance of the sampling- inference combina-
tion in each scenario by calculating mean bias, root- mean- squared 
error, and interval coverage. Mean bias was taken as the average 
deviation between each trial's estimated (or predicted) mean (�̂i) and 
its realized mean (μi): 1

n

∑2000

i=1

�
�̂i − �i

�, where i indexes the simula-
tion trials. Because each trial had a different realized population, μi 
changed with i. Root- mean- squared error was taken as the square 
root of the average squared deviation between each trial's estimated 

(5)f
�∑n

i=1

�
zi−z

�2�

n(n − 1)
,

F I G U R E  3  Histograms of single 
realized populations simulated for the 
normal and skewed responses using the 
random layout and 50% DRE.

(a) (b)
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(or predicted) mean and its realized mean: 
�

1

n

∑2000

i=1

�
�̂i−�i

�2  . 
Interval coverage was taken as the proportion of simulation trials 
where the realized mean was contained in its 95% confidence (or 
prediction) interval. These intervals were constructed using the nor-
mal distribution— justification comes from the asymptotic normality 
of means via the central limit theorem (under some assumptions). 
Quantifying these metrics is important because together, they give 
us an idea of the accuracy (mean bias), spread (RMSE) and validity 
(interval coverage) of the sampling- inference combinations.

2.2  |  National Lakes Assessment Data

The United States Environmental Protection Agency (USEPA), states 
and tribes periodically conduct National Aquatic Research Surveys 
(NARS) to assess the water quality of various bodies of water in 
the conterminous United States. One component of NARS is the 
National Lakes Assessment (NLA), which measures various aspects 
of lake health and water quality. We focus on analysing zooplankton 
multi- metric indices (ZMMI) and mercury concentrations in parts 
per billion (Hg ppb) from the 2012 NLA. For ZMMI, data were col-
lected at 1,035 unique lakes. At less than 10% of lakes, two ZMMI 
replicates were collected. These were averaged for the purposes of 
our study so that each lake had one measurement for ZMMI. For Hg 
ppb, data were collected at 995 unique lakes (there were no repli-
cates). The ZMMI and Hg ppb data are shown as spatial maps and as 
histograms in Figure 4. The ZMMI data tend to be highest near the 
coasts, lowest in the Central United States, are relatively symmetric 
and have a mean of 55.05. The Hg ppb data tend to be highest in the 
Northeastern United States, lowest elsewhere, are skewed, and have 
a mean of 103.16 ppb. Also in Figure 4 are separate spatial semivari-
ogram estimates for ZMMI and Hg ppb. The spatial semivariogram 
quantifies the halved average squared differences (semivariance) of 
responses whose separation (distance) falls within a separation class. 
The spatial semivariance is closely related to the spatial covariance, 
and spatial semivariograms are often used to gauge the strength of 
spatial dependence in data. Both ZMMI and Hg ppb seem to have 
moderately strong spatial dependence (Figure 4), as the empirical 
(estimated) semivariance increases steadily with distance (meaning 
that observations near one another tend to be more similar than ob-
servations far apart from one another).

We studied performance of the four sampling- inference combi-
nations by selecting 2,000 SRS and GRTS samples of size n = 50, 
n = 100, and n = 200 from the realized ZMMI and Hg ppb popula-
tions and then analysing the samples using MB and DB inference. 
In total, there were six separate scenarios (two responses crossed 
with three sample sizes). Within each SRS and GRTS sample, design- 
based and model- based inferences were used to estimate or predict 
the population mean and construct 95% coverage intervals. With 
model- based inference, the exponential covariance was assumed, 
and covariance parameters and the population mean were estimated 
using REML (separately for each SRS and GRTS sample). We used the 
same evaluation metrics as for the simulated data: mean bias, RMSE, 

and interval coverage. Mean bias was taken as the average deviation 
between each sample's estimated (or predicted) mean (�̂i) and the 
population mean (μ) (of ZMMI or Hg ppb): 1

n

∑2000

i=1

�
�̂i − �

�
, where i 

indexes the simulation trials. Because each trial had the same real-
ized population, μ did not change with i (in contrast to the simulated 
data, where the realized mean changed with i). Root- mean- squared 
error was taken as the square root of the average squared deviation 
between each sample's estimated (or predicted) mean and its pop-
ulation mean: 

�
1

n

∑2000

i=1

�
�̂i−�

�2. Interval coverage was taken as the 
proportion of simulation trials where the population mean was con-
tained in its 95% confidence (or prediction) interval. These intervals 
were constructed using the normal distribution.

3  |  RESULTS

3.1  |  Simulated data

Mean bias is nearly zero for all four sampling- inference combinations 
in all 36 scenarios, so we omit a more detailed summary of those 
results here. Tables for mean bias in all 36 simulation scenarios are 
provided in Supporting Information.

We define the relative RMSE as a ratio with numerator given by 
the RMSE for a sampling- inference combination and the denomina-
tor given by the RMSE for SRS- DB. Relative RMSEs for the random 
location layout are provided in Figure 5. When there is no spatial 
covariance (Figure 5, ‘DRE%: 0%’), the four sampling- inference com-
binations have approximately equal RMSE. In these scenarios, using 
GRTS sampling or model- based inference does not generally in-
crease efficiency compared to SRS- DB. When there is spatial cova-
riance (Figure 5, ‘DRE%: 50%’ and ‘DRE%: 90%’), GRTS- MB tends to 
have the lowest RMSE, followed by GRTS- DB, SRS- MB, and finally 
SRS- DB. As the strength of spatial covariance increases, the gap in 
RMSE between SRS- DB and the other sampling- inference combina-
tions widens. Finally, we note that when there is spatial covariance, 
SRS- MB has a much lower RMSE than SRS- DB, suggesting that the 
lack of efficiency from SRS is largely mitigated by model- based in-
ference. These RMSE conclusions are similar to those observed in 
the grid location layout, so we omit a figure and discussion regarding 
the grid location layout here. Tables for RMSE in all 36 simulation 
scenarios are provided in Supporting Information.

95% interval coverage for each of the four sampling- inference 
combinations in the random location layout is shown in Figure 6. 
Within each simulation scenario, all sampling- inference combi-
nations tend to have fairly similar interval coverage, though when 
n = 50 or n = 100, GRTS- DB coverage is usually a few percentage 
points lower than the other combinations, which suggests that the 
local neighbourhood variance estimate may be slightly too small for 
small n. Coverage in the normal response scenarios is usually near 
95%, while coverage in the skewed response scenarios usually varies 
from 90% to 95% but increases with the sample size. At a sample 
size of 200, all four sampling- inference combinations have approx-
imately 95% interval coverage in both response scenarios for all 
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DRE proportions. These interval coverage conclusions are similar to 
those observed in the grid location layout, so we omit a figure and 
discussion regarding the grid location layout here. Tables for interval 
coverage in all 36 simulation scenarios are provided in Supporting 
Information.

3.2  |  National Lakes Assessment Data

Mean bias is nearly zero for all four sampling- inference combinations 
in all six scenarios, so we omit a more detailed summary of those 
results here. Tables for mean bias in all six simulation scenarios are 
provided in Supporting Information.

The relative RMSE of both ZMMI (symmetric response) and Hg 
ppb (skewed response) for all four sampling- inference combinations 
are shown in Figure 7. GRTS- MB has the lowest RMSE, followed 
by GRTS- DB, SRS- MB, and then SRS- DB. The difference in RMSE 
among GRTS- MB and GRTS- DB tends to be quite small. When 
n = 50, SRS- MB RMSE is approximately evenly between SRS- DB 
RMSE and GRTS- MB RMSE, but for the larger sample sizes (n = 100, 

n = 200), SRS- MB RMSE is closer to GRTS- MB RMSE. Lastly, we 
note that GRTS- MB, GRTS- DB and SRS- MB all have noticeably 
lower RMSE than SRS- DB. Tables for RMSE in all six scenarios are 
provided in Supporting Information.

95% interval coverage of both ZMMI and Hg ppb for all four 
sampling- inference combinations is shown in Figure 8. When 
n = 50, interval coverage for both responses is too low, though 
interval coverage is higher for ZMMI (symmetric response) than 
for Hg ppb (skewed response). When n = 100, ZMMI interval cov-
erage is approximately 95% except for GRTS- DB, which has cov-
erage around 92%, while Hg ppb interval coverage ranges from 
approximately 90% (GRTS- DB) to 93% (GRTS- MB). When n = 200, 
ZMMI interval coverage is approximately 95% while Hg ppb inter-
val coverage ranges from approximately 93% (GRTS- DB) to 95% 
(GRTS- MB). As with the simulated data, coverages for the NLA 
data tend to increase with the sample sizes, coverages tend to be 
higher for symmetric responses than for skewed responses, and 
the local neighbourhood variance was slightly too small for small n, 
yielding slightly lower interval coverages than the other sampling- 
inference combinations.

F I G U R E  4  Exploratory graphics 
representing populations for the 
zooplankton multi- metric indices (ZMMI) 
and mercury concentration in parts per 
billion (hg ppb) in the 2012 National Lakes 
Assessment (NLA) data.

(a) (b)

(c) (d)

(e) (f)
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Recall that model- based inference defines interval coverage 
properties across realized populations. With the simulated data, we 
evaluated interval coverage across realized populations, but for the 
NLA data, we evaluated interval coverage within a single realized 
population. We did find that model- based coverages were similar to 

the design- based coverages, however, suggesting that for some real-
ized populations, it is reasonable to heuristically view data from sep-
arate random samples as being from approximately separate realized 
populations. But generally, if model- based intervals constructed 
from many random samples of a single realized population show 

F I G U R E  5  Simulated data relative 
RMSE for the four sampling- inference 
combinations and three sample sizes in 
the random location layout. The rows 
indicate the proportion of dependent 
error and the columns indicate the 
response type. The solid, black lines 
separate the sample sizes.

F I G U R E  6  Simulated data interval 
coverage for the four sampling- inference 
combinations and three sample sizes in 
the random location layout. The rows 
indicate the proportion of dependent 
error and the columns indicate the 
response type. The solid black lines 
separate the sample sizes and the dashed 
black lines represent 95% coverage.
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improper coverage, this does not necessarily imply a deficiency in 
model- based inference. Tables for interval coverage in all six simula-
tion scenarios are provided in Supporting Information.

4  |  DISCUSSION

The design- based and model- based approaches to frequentist 
statistical inference rest on fundamentally different foundations. 
Design- based approaches rely on random sampling to estimate 
population parameters. Model- based approaches rely on distribu-
tional assumptions to predict realized values of a data- generating 
stochastic process. Though model- based approaches do not rely 
on random sampling, random sampling can still be beneficial as a 
way to guard against preferential sampling. While design- based and 
model- based approaches have often been compared in the litera-
ture from theoretical and analytical perspectives, our contribution 
lies in studying them for finite population spatial data while imple-
menting GRTS sampling and the local neighbourhood variance esti-
mator. Aside from the theoretical differences described throughout 
the manuscript, a few analytical findings from the simulated and 
real data studies were particularly notable. All sampling- inference 
combinations had approximately zero mean bias. Independent of 
the inference approach, the GRTS samples yielded lower RMSE than 
their SRS counterparts. Though GRTS- DB and GRTS- MB generally 
had very similar RMSE, SRS- MB tended to have much lower RMSE 
than SRS- DB, suggesting that the model- based inference mitigated 
much of the inefficiency in RMSE from SRS. As the proportion of 
dependent random error in the simulated data increased, SRS- MB, 
GRTS- DB and GRTS- MB become increasingly more efficient (lower 
RMSE) than SRS- DB. Interval coverage tended to be higher for the 

symmetric responses than skewed responses and tended to increase 
with the sample size. At a sample size of n = 200, generally all inter-
val coverages were near the desired value of 95%.

There are several benefits and drawbacks of the design- based 
and model- based approaches for finite population spatial sampling 
and inference. Some we have discussed, but others we have not, 
and they are worthy of discussion. First, we discuss advantages of 
the design- based approach. Design- based inference is often com-
putationally efficient, while model- based inference can be compu-
tationally burdensome, especially for likelihood- based estimation 
methods like REML that rely on the inverse of a covariance ma-
trix. Design- based inference easily handles binary data through a 
straightforward application of the Horvitz– Thompson estimator. In 
contrast, analysing binary data using model- based inference gener-
ally requires a logistic mixed regression model, the parameters of 
which can be difficult to estimate and interpret (Bolker et al., 2009). 
An advantage of design- based inference is that interval coverage is 
valid (has the proper coverage rate) as long as (a) the sample is suf-
ficiently large to ensure the statistic's sampling distribution is ap-
proximately normal and (b) the variance estimator is consistent (Brus 
& De Gruijter, 1997; Särndal et al., 2003). This is because with the 
design- based approach, the sampling plan and inclusion probabilities 
are specified directly by the researcher. An advantage of SRS- DB 
not previously mentioned is that it is likely to be valid given the con-
sistency of its variance estimator (Särndal et al., 2003). With the 
model- based approach, however, interval coverage is unlikely to be 
valid if the model assumptions made do not accurately reflect reality. 
Whether model assumptions accurately reflect reality can be a chal-
lenging and sometimes impossible question to answer definitively.

Now, we discuss advantages of the model- based approach. The 
model- based approach can more naturally quantify the relationship 

F I G U R E  7  NLA data relative RMSE for 
the four sampling- inference combinations. 
The columns indicate the response type. 
The solid, black lines separate the sample 
sizes.

F I G U R E  8  NLA data interval 
coverage for the four sampling- inference 
combinations. The columns indicate 
the response type. The solid black lines 
separate the sample sizes and the dashed 
black lines represent 95% coverage.
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between covariates (predictor variables) and the response variable 
than design- based approaches. Model- based inference also yields 
estimated spatial covariance parameters, which help better under-
stand the dependence structure of the process in study. Model 
selection is also possible using model- based inference and criteria 
such as cross validation, likelihood ratio tests or AIC (Akaike, 1974). 
Model- based inference is capable of more efficient small- area 
estimation than design- based inference because model- based 
inference can leverage distributional assumptions in areas with 
few observed population units. Model- based approaches also ac-
commodate unit- by- unit predictions at unobserved locations that 
can be used to construct informative visualizations like smoothed 
maps. Brus and De Gruijter (1997) provide a more thorough discus-
sion regarding the benefits and drawbacks of the two approaches. 
In short, when deciding whether the design- based or model- based 
approach is more appropriate to implement, these benefits and 
drawbacks should be considered alongside the particular goals of 
the study.

There are many extensions of this research deserving of future 
consideration that include sampling with unequal inclusion prob-
abilities, using different spatially balanced sampling approaches 
(instead of GRTS), using different spatial data configurations, 
using different spatial domains like stream networks (Ver Hoef & 
Peterson, 2010), using different response or covariance structures, 
and using spatial or external mean trends (which can be defined 
through covariates).
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